Effect of Some Drying Methods on Nutritional and Technological Qualities of Extruded Flour Blend product

Shereen Mohammed Awad1* and Abdelmoneim Ibrahim Mustafa2

1- Department of cereal technology, Food Research Centre - Khartoum North - Sudan
2- Department of food science and technology – Faculty of Agriculture – University of Khartoum

Corresponding Author: Shereen Mohammed Awad

Received: 25 December, 2013 Accepted: 10 January, 2014 Published: 31 January, 2014

ABSTRACT
This study was carried out to test the effect of drying under sun and shade before frying on the nutritional and technological quality of extruded flour blend. Blend of wheat flour and corn starch was subjected to analysis of chemical composition before processing to detect the effect of processing (extrusion) and drying on the nutritional value. Extruded sample dried under sun reflected a moisture content of 9.46% and 11.57% for the sample dried under shade. Chemical composition of fried extruded sample dried under shade showed a significant increase compared with extruded sample dried under the sun. In addition the in vitro protein digestibility of extruded samples dried under shade gave a better result than the sample dried under the sun and both of them were better than the blend (extrusion effect). However, lysine (An essential amino acid) recorded 26.963 and 51.225 for samples dried under sun and shade, respectively. In general the extruded sample dried under shade had specific volume (expansion ratio) better than the sun dried sample. Sensory evaluation of the extruded sample dried under shade was found superior in taste, crispness and general acceptability.

Keywords: extrusion – sun drying – shade drying.

INTRODUCTION
Cereals are the base of the human diet in most countries of the world. In fact, they provide most of the caloric energy and an important part of the proteins needed by human beings. Furthermore, there is evidence showing that healthy diets for humans should provide most of the calories as complex carbohydrates such as cereal starch (Dendy and Dobraszcyk, 2001). The most employed cereals in human food are wheat and rice, although barley, rye, oat, sorghum and corn are also important. Although carbohydrates are their main dietary contribution they also provide proteins and smaller amounts of lipids, fibre and vitamins.

Extrusion is a thermal processing that involves the application of high heat, high pressure and shear forces, to an uncooked mass, such as cereal foods (Riha, 1996). Extrusion cooking is an important and popular food processing technique and cereal grains are common ingredients in extruded products (Faraj, 2004). Extrusion of cereal-based products has advantages over other usual processing methods because of low cost, short time, high productivity, versatility, unique product shapes and energy savings (Faraj, 2004 and Farouk, 2000). The extrusion process results in a number of chemical changes that occur, including gelatinization of starch molecules, cross-linking of proteins and the generation of flavors (Riha, 1996).

Objective of this study
To compare the sun drying and shade drying effects on the nutritional value of the extruded product.
MATERIALS AND METHODS

Blends and samples preparation
The blends were prepared by adding 1.5 kg of wheat flour and 1 kg corn starch. Samples were prepared by adding tap water till well wetted, extruded by a machine model DLG 90 single screw, then cut into regular shapes, some of samples were dried under shade for 18 hours, at 30°C and then fried. Other samples were dried under sun for 8 hours at 42 °C and then fried.

Chemical composition
Moisture, ash, crude protein, fat and carbohydrates were determined for samples (before and after frying) according to AACC (2000) method.

Calcium and Magnesium
Calcium (Ca) and magnesium (Mg) determination was carried out according to Chapman and Pratt (1961).

Phosphorus
Phosphorus determination was carried out according to Chapman and Pratt (1961) using CE 202 Ultraviolet spectrophotometer.

In vitro protein digestibility with pepsin
The *in vitro* protein digestibility was determined for samples (before and after frying) by the method of Maliwal (1983) as modified by Manjula and John (1991).

Amino acids profile
Amino acids were determined using High Performance Liquid Chromatography (HPLC).

Physical tests

Volume of extruded samples
Twenty grams of each sample weighed, and then put in a measuring cylinder (500 ml), then the volume was read.

Sensory evaluation:
Extruded samples were assessed organoleptically by the ranking test according to the procedure described by Ihekoronye and Ngoddy (1985).

Statistical analysis procedure
Data generated was subjected to analysis using the statistical Package for Social Science (SPSS). Means were tested by analysis of variance (ANOVA), and then means were separated using Duncan’s Multiple Range Test (DMRT) according to Mead and Gurnow (1983).

RESULTS AND DISCUSSION

Proximate composition of blends
Table (1) shows the results of proximate composition of extruded samples before frying.

Moisture content
Table (1) shows the moisture content of the test samples as 7.0%. Moisture content of starch before extrusion was an important factor controlling the expansion volume of starch (Chinnaswamy and Hanna, 1987). The results obtained are in agreement with Chinnaswamy and Hanna (1988) who reported the maximum expansion ratio was observed at the moisture content ranged 7.0 - 14.2% of starch, and decreased from 14.0 - 30.0%.

Ash content
The ash content of the test samples appears in Table (1). It was 0.54% for the wheat – corn blend. This result is in a good agreement with Zeleny (1971) who reported that the ash content of wheat flour is 0.52-0.55%.

Fat content
The fat content was 1.07% for samples. These results were lower than these obtained by Hassan (2007) who reported fat content of wheat flour as 1.33%.
Protein content
Table (1) show the protein content of sample as 6.01%. This value was lower than the value reported by Giami et al. (2005) and Haldore et al. (1982) who gave that the protein content of wheat flour as 11.3 and 10-16%, respectively. This decrease may be due to the addition of corn starch because there is negative relationship between starch and protein content.

Carbohydrates content
Carbohydrates content of sample 85.38% (Table 1)

Minerals content of blends
Table (1) shows the mineral content of blend. Calcium (Ca) content of the sample was 0.0200%.

Moisture content of the extruded samples after drying
The results of Table (2) show the moisture content of extruded samples after drying and before frying. The moisture content was 9.46% and 11.57% for sun dried and shade dried samples, respectively. These differences may be due to the differences of drying methods (sun and shade drying).

Proximate composition of extruded samples after frying
Table (3) shows the results of proximate composition of extruded samples after frying.

Moisture content of products
Moisture content of extruded samples illustrated in Table (1) as 4% for all samples dried using the two methods of drying (sun and shade drying) then fried. This result was lower than the moisture content of samples before frying, and that may be attributed to the very high temperature of frying oil, which has driven some of the moisture.

Ash content
Table (1) shows the ash content of extruded samples after frying as 2.15 for the sample dried under sun. Sample dried under shade then fried gave result as 2.64.

Fat content
Fat content of extruded samples after frying was obtained in Table (1) as 23.21 and 23.37% for the samples dried by the two methods of drying (sun and shade), respectively. These high values of fat may be attributed to frying treatment where samples absorbed a quantity of oil.

Protein content
Table (1) shows the protein content of extruded samples after frying as 5.41% for sun dried sample. This result was lower than sample dried under shade, which recorded 5.44.

Carbohydrates content
Results of carbohydrates of the extruded samples, after frying, were shown in Table (1) as 64.74% for sun-dried sample and 65.04% for sample dried under shade.

Minerals content
The results of the mineral content of extruded samples after frying are shown in Table 1. That is, Calcium (Ca) content was 0.0201% in sun-dried sample and 0.0203 in shade dried sample. Magnesium (Mg++) was recorded 0.0102 and 0.0120 and Phosphorous content was 0.00216 and 0.00223 for sun dried and shade dried, respectively. It has been observed that samples dried under shade had higher minerals content than samples dried under sun, and this might be due to the direct correlation between the ash and the minerals content.

In vitro protein digestibility
In vitro protein digestibility of blend and extruded samples are illustrated in Table (3). Extrusion cooking has enhanced in vitro protein digestibility, the blend sample before extrusion obtained 23.50, extruded samples dried under sun obtained value 23.60. In sample dried under shade in vitro protein digestibility value was 23.63. The results agree with Bishnoi and Khetarpaul (1993) and Chau and Cheung (1997) who reported that the extrusion cooking produced a more significant improvement of in vitro protein digestibility and in vitro starch digestibility in fava and kidney beans.
Amino acids content of samples after frying

Table (4) show the contents of amino acids for samples after frying in mg/100 g. Tryptophan is an essential amino acid, but it was not determined as it is not stable in acid hydrolysis. Lysine recorded 51.225 mg/100 g for the sample dried under shade; and 26.93 for the sun-dried sample. Therionine, leucine and isoleucine were increased in extruded samples dried under shade when compared with sun dried sample. Generally, sun drying lowered the levels of amino acids in samples compared with samples dried under shade. This may be attributed to the high temperature of sun-drying.

Physical tests
Volume of extruded samples

Better specific volume was recorded in sample dried under shade than this dried under sun, this may be due to the higher moisture content of sample dried under shade (11.57) resulting by drying compared with samples dried under sun (9.46%) table (5).

Sensory evaluation of extruded samples

Results of sensory evaluation of extruded samples were summarized in Table (6). The results showed significant differences (P≤0.05) among the samples dried by the two methods of drying (sun and shade) in taste, colour crispness, flavour and General acceptability.

In general, all samples dried under shade gave high scores in all sensory characteristics.

Table 1. Proximate composition of the flour blend and the extruded samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Moisture (%)</th>
<th>Ash (%)</th>
<th>Fat (%)</th>
<th>Protein (%)</th>
<th>CHO (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7.0±0.00a</td>
<td>0.54±0.00b</td>
<td>1.07±0.00c</td>
<td>6.01±0.01d</td>
<td>85.38±1.01e</td>
<td>0.0200</td>
<td>0.0080</td>
<td>0.0095</td>
</tr>
<tr>
<td>SD</td>
<td>4.0±0.00b</td>
<td>2.15±0.00c</td>
<td>23.21±0.18d</td>
<td>5.41±0.11e</td>
<td>64.25±0.43f</td>
<td>0.0201</td>
<td>0.0102</td>
<td>0.0021</td>
</tr>
<tr>
<td>SH</td>
<td>4.0±0.00b</td>
<td>2.64±0.00c</td>
<td>23.37±0.29d</td>
<td>5.44±0.01e</td>
<td>65.04±0.08f</td>
<td>0.0203</td>
<td>0.0120</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

Any two mean±S.D values having different superscript letters differ significantly (P≤0.05).

B: Blend of wheat flour and corn starch
SD: Sun dried extruded sample
SH: Shade dried extruded sample

Table 2. Moisture content (%) of extruded samples after drying and before frying

<table>
<thead>
<tr>
<th>Samples</th>
<th>Moisture content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>9.46±0.01a</td>
</tr>
<tr>
<td>SD</td>
<td>11.57±0.02b</td>
</tr>
</tbody>
</table>

Any two mean±S.D values having different superscript letters differ significantly (P≤0.05)

Samples:
SD: Sun dried extruded sample
SH: Shade dried extruded sample

Table 3. In vitro protein digestibility of blend and extruded samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protein digestibility %</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>23.50a</td>
</tr>
<tr>
<td>SD</td>
<td>23.60b</td>
</tr>
<tr>
<td>SH</td>
<td>23.63c</td>
</tr>
</tbody>
</table>

B: Blend of wheat flour and corn starch.
SD: Sun dried extruded sample
SH: Shade dried extruded sample

Table 4. Amino acid content of samples after frying (mg /100 gm)

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Aspartic acid</th>
<th>Threonine</th>
<th>Serine</th>
<th>Glutamic acid</th>
<th>Glycine</th>
<th>Alanine</th>
<th>Cystine</th>
<th>Valine</th>
<th>Methionine</th>
<th>Isoleucine</th>
<th>Leucine</th>
<th>Tyrosine</th>
<th>Phenylalanine</th>
<th>Histidine</th>
<th>Lysine</th>
<th>Ammonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>105.90</td>
<td>74.963</td>
<td>90.525</td>
<td>249.76</td>
<td>76.425</td>
<td>165.41</td>
<td>-</td>
<td>161.42</td>
<td>38.363</td>
<td>133.150</td>
<td>242.52</td>
<td>-</td>
<td>121.475</td>
<td>59.425</td>
<td>26.96</td>
<td>392.438</td>
</tr>
<tr>
<td>SH</td>
<td>150.70</td>
<td>108.450</td>
<td>131.84</td>
<td>732.50</td>
<td>123.08</td>
<td>195.36</td>
<td>-</td>
<td>227.03</td>
<td>54.875</td>
<td>205.288</td>
<td>356.08</td>
<td>-</td>
<td>181.825</td>
<td>82.063</td>
<td>51.22</td>
<td>658.500</td>
</tr>
</tbody>
</table>

SD: Sun dried extruded sample
SH: Shade dried extruded sample
Table 5. Volume of fried extruded samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Volume (cc)</th>
<th>SD</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>310±20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>317±5.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any two mean±S.D values having different superscript letters differ significantly (P≤0.05).
SD: Sun dried extruded sample
SH: Shade dried extruded sample.

Table 6. Sensory evaluation of fried extruded samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Taste</th>
<th>Colour</th>
<th>Crispness</th>
<th>Flavour</th>
<th>General acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>7.0±1.89</td>
<td>7.9±1.30</td>
<td>6.7±1.79</td>
<td>6.9±1.81</td>
<td>6.9±1.81</td>
</tr>
<tr>
<td>SH</td>
<td>7.8±0.43</td>
<td>8.2±1.05</td>
<td>8.0±1.18</td>
<td>7.8±1.12</td>
<td>8.1±0.86</td>
</tr>
</tbody>
</table>

Any two mean±S.D values within each column having different superscript letters differ significantly (P≤0.05).
SD: Sun dried extruded sample
SH: Shade dried extruded sample

CONCLUSION

Sun-drying has a negative effect on chemical composition (quality) of extruded sample. Sun-drying has a negative effect on volume and sensory quality of extruded samples. The physical characteristics of extruded samples dried under shade were superior to extruded dried under sun.

REFERENCES